US 2009/0205018 Al

[0100] By treating the communication medium as an
object, the system 20 offers strategies to support data transfer
that are in compliance with the policy. For example, the
producer process could create an object that represents the
physical medium/support of the data transfer mechanism.
This new object may be assigned attributes in accordance to a
predefined and policy-specific set of conditions. These con-
ditions can be specified via the event-response relations (e.g.,
if a process reads secret data, any subsequently created object
will be assigned to the secret attribute). The consumer process
must be able to read the object that represents the physical
medium under the rules of the reference mediation.

[0101] A practical example pertains to the clipboard that is
used in performing copy/cut and paste operations. When pro-
cess p, issues the copy/cut request, the access control module
28 creates an object, say co, which represents the clipboard,
with attributes that are specified in the event-response rela-
tions. The data is transferred to the clipboard as usual. When
the same or different process p, issues the paste request, the
access control module 28 naturally treats this request as a
request to read from object co. As for any other process
request, the access control module 28 invokes the reference
mediation function to check whether p, is authorized to read
the object co. Ifthe request is granted by the reference media-
tion function, p, continues with the paste operation as usual.

[0102] The following examples illustrate the ability of the
system 20 to support the security objectives of RBAC and
MLS security models. The system 20 does not necessarily
emulate the specific rules or relations of any model, but rather
is able to achieve the same policy objectives of those models.

[0103] Consider the combination of the two access control
policies depicted in FIG. 3, a role-based access control
(RBAC) policy, and a multi-level security (MLS) policy. A
known administrative objective of RBAC is to streamline
authorization management by defining roles as relations
between users and capabilities. These relations are achieved
by assigning users to roles on one side and assigning capa-
bilities to roles on the other side. By assigning a user to a role,
that user instantaneously acquires the capabilities that are
assigned to the role. Another RBAC feature is the ability to
define a role hierarchy, i.e., an inheritance relation between
roles, whereby senior roles acquire the capabilities of their
juniors. By assigning a user to a role, the user is also (indi-
rectly) associated with the capabilities of that role’s junior
roles. Finally, the RBAC standard includes two types of rela-
tions for the enforcement of separation of duties: static sepa-
ration of duty (SSoD) and dynamic separation of duty
(DSoD).

[0104] The system 20 meets the administrative and policy
objectives of RBAC. Indeed, a user attribute in the system 20
includes the semantics ofa RBAC role, i.e. by assigning auser
to that user attribute, the user acquires the capabilities asso-
ciated with the user attribute. Moreover, the system 20 is
superior to RBAC in administrative efficiency, due to addi-
tional abstractions. In the system 20, capabilities are indi-
rectly associated with user attributes through the double
assignment user attribute-operation set-object attribute. By
assigning a user to a user attribute the user is capable of
performing the operations in the operation set on the objects
in the container represented by the object attribute. Further-
more, the system 20 allows for the efficient association of
objects with access control entries of the form (user, opera-
tion), while RBAC offers no semantics in this regard. With
regard to role hierarchies, the system 20 offers semantics
similar to RBAC through the user attributes assignments to

Aug. 13,2009

other user attributes. Finally, the system 20 allows for the
inheritance of access control entries between object
attributes.

[0105] Considering the example in FIG. 3, the user
attributes Doctor, Intern, and Consultant represent RBAC
roles. The configuration includes object attributes Med
Records and Development, and objects like mrecl and
projectl. Under the RBAC policy, user alice’s permissions are
directly derived from alice’s assignment to the user attribute
Doctor (i.e., (alice, w, mrecl), (alice, w, mrec2), and (alice, w,
mrec3)). Alice also inherits the permissions (alice, r, mrec1),
(alice, r, mrec2), (alice, r, mrec3) from the assignment
Doctor—Intern, which offers the same semantics as that of
the role hierarchy.

[0106] Conflict of interest in a role-based system may arise
as a result of a user gaining authorization for capabilities
associated with conflicting roles. One means of preventing
this form of conflict of interest is through static separation of
duty (SSOD) to enforce constraints on the assignment of
users to roles. SSoD relations place constraints on the assign-
ments of users to roles. Membership in one role may prevent
the user from being a member of one or more other roles.
Dynamic separation of duty (DSoD) relations, like SSoD
relations, limits the capabilities that are available to a user.
However DSoD relations differ from SSD relations by the
context in which these limitations are imposed. DSoD
requirements limit the availability of the capabilities by plac-
ing constraints on the roles that can be activated within or
across a user’s sessions.

[0107] The system 20 can be programmed to provide the
same security objectives as SSoD and DSoD, but through
different means. Assume that a conflict of interest would arise
if a user were able to execute capability (op,, 0,) and capa-
bility (op,, 0,). Under RBAC, these capabilities would be
assigned to different roles (say r; and r,)and an SSoD relation
would be imposed between those roles and thus prevent any
user from being simultaneously assigned to both roles. The
following obligation relations in system 20 can be used to
achieve this same objective:

[0108] process performs (op,, 0,) =deny (process user,
{0p,}, 02)

[0109] process performs (op,, 0,) =>deny (process user,
{op,}, 01)

[0110] Through these relations, any process that success-
fully executes (op,, 0,) would effectively deny the process
user the ability to successfully execute (op,, 0,) in the future
and vice-versa. Furthermore, in an RBAC SSD environment,
while a user u, that is assigned to r, would be prevented from
executing (op,, 0,) through denial of membership to r,, noth-
ing prevents (0p,, 0,) from being assigned to some r; and u,
being assigned to r;.

[0111] Regarding DSoD, assume once again the capability
(op,, 0,) and capability (op,, 0,) that are respectively
assigned to r; and r,. Also, assume r; and r, are in a DSoD
relation in RBAC. Under these circumstances, no user may
have the ability to execute both capabilities within the same
session. However, a user can assume both roles in different
sessions either concurrently or sequentially. Given that DSoD
does not limit a user’s ability to execute both capabilities
within different session, we see the security objective as being
that of enforcement of least privilege at the process level.
Under least privilege a process should be prevented from
executing (either maliciously or by error) both capabilities.
The following obligation relation in system 20 can be used to
achieve this same objective:

[0112] process performs (op,, 0,)=deny (current process,
{0p,}, 0,)
[0113] process performs (op,, 0,)=deny (current process,

{op,}, 0,).



